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Fermi-Dirac statistics and traffic in complex networks
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We propose an idealized model for traffic in a network, in which many particles move randomly from node
to node, following the network’s links, and it is assumed that at most one particle can occupy any given node.
This is intended to mimic the finite forwarding capacity of nodes in communication networks, thereby allowing
the possibility of congestion and jamming phenomena. We show that the particles behave like free fermions,
with appropriately defined energy-level structure and temperature. The statistical properties of this system are
thus given by the corresponding Fermi-Dirac distribution. We use this to obtain analytical expressions for
dynamical quantities of interest, such as the mean occupation of each node and the transport efficiency, for
different network topologies and particle densities. We show that the subnetwork of free nodes always frag-
ments into small isolated clusters for a sufficiently large number of particles, implying a communication
breakdown at some density for all network topologies. These results are compared to direct simulations.
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[. INTRODUCTION particles has to be taken into account. In particular, the nodes
. . of real networks do not have infinite processing capacity, and
The subject of complex networks has become an imporif there are many particlednternet “packets,” for example
tant area of research in statistical physics since its debut witthey will get into each other’s way, causing collective behav-
the paper by Watts and Strogdty] (for reviews, see Refs. jor such as congestion and jamming. One of the ways to take
[2—4]). As a result of past work in the area, we now know this into account is by measuring the importance of each
that most of the networks, either natural or manmade, ar@ode to transport, motivating the introduction cg#ntrality
scale-fred 5], with a very inhomogeneous distribution of the measuresof which the most prominent is theetweenness
number of neighbors among nodes, following a power law. Acentrality[21-26. A different approach is the direct simula-
natural question is: how do networks’ structural features aftion of traffic, usually by cellular-automata-like models
fect the dynamics of processes taking place within the nett24—33. Recent models have also considered cascades of
work? The study of the dynamics of complex networks ismalfunctions caused by congestif86]. _
seen nowadays as one of the main challenges in this area. We feel that it would be highly desirable to have a simple
One of the most natural and important kind of dynamicaImOde| of transport which incorporates collective effepts like
process to consider is the flow of traffic through a network. ACONgestion in a tractable way, such that some analytic results

typical example is the flow of information in a communica- could be obtained for the statistics of the system. Even

tion network, such as the Internet. In the Internet, any mestough such model would necessarily have to be highly ide-

sage is first split into small packets, each of which foIIowsa“Zed' it would serve as a tool to explore the dynamics of

. . . . transport in real networks. This follows the tradition of sta-
independently its own trajectory, hopping from node to rmdetistical physics, which has greatly benefitted from the use of

until they find their destiny. One can consider this process aRealized models, such as the Ising model for magnetic sys-

a number Qf particles moving in t_he n_etwork through_ itstems, and many others. Motivated by this, we introduce in
links. A_s a first approach, one can imagine that the partlcleﬁ]iS paper a simple model of traffic in a network, which
dp not interact with each. other, or_equalently, ON€ can CoNy,orporates the collective effects in the simplest possible
s!der .the motion of a s_mgk_e particle in the net\_/vork. ThISWay. In our model, there ane particles moving randomly in
?;luatlon.hlas beebn SLUd'eﬂ Infa numberr]'of p;ewouhs rv]vorksthe network, subject to the constraint that each node can be
e particle can be thought of as searching through the nef5e.hieq by at most one particle. Other than this constraint,
wor k for its target n(_)de, using only local |nformat|{)61—13]_ each particle performs a random wadlietails of the model
(it is worth mentioning that in Ref.9] a search method is are given in Sec. )l This avoidance rule is inspired by the

adapted to take pa.rtlcle interaction into accOumn_other limited capacity of nodes in communication networks to pro-
approach is to consider that the particle is performing a 'aNtess information. In Sec. Ill, we show that this constraint

doml\_/valltj_if? the network, j‘ng study the properties of the, s jike Pauli's exclusion principle of quantum mechan-
resulting “' usion prog:es”EL —20. . .. Jcs. As a consequence, the particles behave like a sat of
These “noninteracting .appro.aches Y'elq Valuable. 'ns'g_htfree fermions on a quantum system with single-patrticle
on the full problem of traffic, besides being important in the'rstatesiwhereN is the number of nodes of the netwayrkvith
own right. Howeve.r, in order to fully undgrstand _the dyn‘E‘m'appropriately chosen energy levels. The statistical properties
ics of network traffic, sooner or later the interaction between,¢ v model are thus given by the Fermi-Dirac distribution
of the equivalent quantum system. As a result, analytical
expressions are found for all the statistical quantities of in-
*Email address: amoura@if.usp.br terest. To the best of our knowledge, this is the first model of
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transport in networks with inter-packet interaction which Our theory is valid for any distribution,, so we do not
yields analytical results. Although it is certainly very ideal- make any assumption about it at this point.

ized, it incorporates collective effects such as jamming in a We assume that information flows in the network in dis-
natural way. The appearance of a Fermi-Dirac statistics ircrete packets. We represent thisy. N “packets” or “par-

this model establishes a nice connection between transpaditles” moving in the network. These particles can be thought
problems in networks and equilibrium quantum statisticalof as representing data packets in the Internet, for example.
mechanics, which perhaps can be generalized to more realVe further assume that each node can be occupied by at
istic transport models. As a testing ground for our theory, anost one particle. This is the simplest way to incorporate
direct simulation of the traffic process described above isnto the model a finite capacity of each node. This prescrip-
performed in a network grown according to the Barabasition amounts to an effective inter-particle interaction: par-
Albert scheme, and the numerical results obtained therebtjcles “avoid” each other.

are found to be in excellent agreement with those predicted In order to completely define the model, we must pre-
by the Fermi-Dirac distribution. scribe how the particles move within the network. We define

We want to use this theory to get information on traffic a very simple stochastic dynamics. At each time step, one of
flow, especially collective effects such as jamming. With thisthe n particles is chosen randomly, with uniform probability
motivation in mind, we define in Sec. IV a quantify pro- among all particles. The chosen patrticle is at this moment in
portional to the number of failed hoppings due to the occusome node, which is linked to other nodegits neighbors
pation of the nodes, and find an analytical expression for iThe particle chooses one of thdsaeighbors randomly, and
using the Fermi-Dirac statistics. We find that the inhomogetries to move there. If the chosen node is unoccupied, the
neity of the degree distribution tends to decrease the transnove is successful, and the node becomes occupied by the
port efficiency of the network. This can be understood fromparticle, which leaves its previous node free. If, however, the
the fact that the most connected nodes are the ones mastrget node is already occupied, the move fails, and the par-
likely to be occupied, and they are exactly the most cruciaticle remains where it is. After this, a new time step begins, a
nodes to transport. new particle is selected randomly, and so on.

The structure of the subnetwork of occupied nodes is in- In the case when there is only a single particle in the
vestigated in Sec. V. The condition for the percolation of thisnetwork (n=1), the above dynamics means that this particle
subnetwork is found in terms of the density of particlesexecutes a random walk in the network.nlf 1, however,
(number of particles divided by the number of nodes of thethe particles interfere with each other’s motion. This interfer-
network). We apply this condition to the particular case of aence is a direct result of our restriction that there can be only
scale-free network, with a degree distribution given by aone particle in a node at any given time. There results from
power law, p,~k™”. We find that fory<3, the occupied this a kind of “interaction” between the particles, which is
nodes always percolate, even for arbitrarily small densitiesesponsible for the appearance of collective phenomena such
(in the limit of large network size Thus, in these networks, as jamming. The model presented here introduces this inter-
the particles always aggregate in a giant cluster consisting afction in the simplest possible way, which allows us to un-
(on averagghighly connected occupied nodes. derstand in detail the system’s behavior, and to get some

Another important issue is the structure of the fteeoc-  important analytical results, as we shall see in the following.
cupied nodes, also discussed in Sec. V. We apply the Fermi-

Dirac formalism to find the percolation condition of the free
subnetwork. The result is that there is always a percolating lil. FERMI-DIRAC STATISTICS OF THE
transition, for any network topology: above a certain critical TRAFFIC DYNAMICS

density of particleswhich depends on the degree distribu-  As mentioned in the previous section, a single particle
tion), the free subnetwork no longer percolates. This meanfyllowing the dynamics of our model performs a random
that for high densities, the free nodes are scattered amonRgalk in the network. It is a well-known result from graph
small fragmented noncommunicating clusters. The free subtheory that in this case, in the limit of long times, the time
network is the set of nodes in a communication networkihe particle spends in a given node is proportional to the
through which a new “packet” can pass unhindered by thgjegreek of the nodg[37]. In other words, the probability;
congestion. Thus, for densities above this percolating transihat the particle is found in a nodeof degreek; is propor-

tion, there is a global breakdown in communication. tional tok;:
The final section of the paper, Sec. VI, summarizes our
results, with a discussion on their significance and their pos- q = ki (1)
sible generalization. e ’
g 2]’ Ki
Il. MODEL where the sum is over all nodes of the network.

This gives us the occupation probability of any node in
In this paper we consider a network with nodes. We the case of one particley=1. What happens if there are
assume the network to be connected, that is, there is a patimany particles in the network? The particles interact with
built with network links, connecting any two nodes. The net-each other only through the restriction that the occupation of
work is defined by the probabilitigg, that a randomly cho- any node is at most 1. Exactly the same situation occurs in a
sen node hak neighbors(i.e., that the node has degrke  system with n fermions, consisting ofN single-particle
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states. No two fermions are allowed to occupy the same 1 L —
quantum state. If it is assumed that théermions do not
interact directly(i.e., they are freg this restriction gives rise
to Fermi-Dirac distributiorf38]. Our particles are an exactly
analogous system: the particl@s “packets’) are the equiva-
lent of fermions, and the nodes are analogous to quantum 06l
single-patrticle states. This analogy leads us to conclude that =
the occupation of the nodes (after equilibrium is reached) is
given by the Fermi-Dirac distributian 0.4
In order to derive results from this analogy, we need to
know the equivalent of the “energy” associated with each

node, that is, the energy of the single-particle states. This is 0.2 [
0 20 40 60 80 100

done by using the result from statistical physics that the one- K
particle occupation probability of a states proportional to
the Boltzmann factor: FIG. 1. Mean occupatiom, of nodes with degree, in a
Barabasi-Albert network with hodes, and % 10* particles, cor-
] :Coe_BE‘, (2) responding toA=11.42. Circles are values measured from the

. . . . . simulation, and the continuous line is the prediction of -
whereE; is the energy associated with the statgs is the

inverse temperature, arig}, is a normalization constant. The

single-particle occupation probability in our case corre- S Pk = )

sponds to one particle moving through the network, and is C Awkt+1 7

given by Eq.(1). Substituting this in the above expression,

we obtain the expression for the “energy” associated with gyhere we indicate explicitly thah depends ons. From the

nodei with degreek;: above equation, we can show th#éju) is a positive decreas-

1 ing function of u, dA/du<0. Using the fact that the,

BE; =In(CK™). (3 distribution is normalized=,p,=1), and Eq.(7), we can

HereC is a constant. Notice that E(8) determines only the Turther show that

product BE;, not B or E; separately. This means that in our

model the “temperature” 9 is not fixed, and cannot be "TO Alp) =, "Lnl Alp) =0. (8)
thought of as an independent external parameter, as is usu- . .
ally the case in statistical physics. We note that even though the number of particigand

We denote byn; the mean occupation of node when  thereforeu) is not exactly constant in the grand canonical
there aren particles in the network. As usual in the physics ensemble, for large its fluctuations are negligible. Thus, in
of many-particle systems, we use the grand canonical erthe thermodynamic limith,N— o, n/N— w), the results are
semble, where the number of particles is not fixed, but itdhe same as those obtained using the canonical ensemble
mean value is prescribed. is then given by the Fermi-Dirac (which fixesn).

distribution: From Eqg.(5), we see that the mean occupation of a node
increases with its degree, as was to be expected. Moreover,
= 1 ) ask— o, ng—1: if a node has many neighbors, it is almost
1T eatBE 4 1 certain that it will be occupied by a particle. This “cluster-

ing” of particles in the more connected nodes leads to jam-
where BE; is given by Eq.(3) and « is the chemical poten- ming, as we shall see.

tial. Substituting Eq(3), we have In order to test Eq(5), we simulate the stochastic dynam-
ics described in Sec. Il. We generate a scale-free network by
= 1 (5) the Barabasi-Albert algorithif6], with N=10° nodes, with
OAKT+1 an average of 6 links per node. We release3 X 10* par-

ticles in it, initially randomly distributed among all nodes.
where A is related to the chemical potential, and is deter-This corresponds t.=0.3. After a sufficiently long time
mined by requiring that the average number of particles inenough to reach dynamical equilibriymwe measure the

the network be equal to the prescribed vatue mean occupation of the nodes as a function of their delgree
The result is shown in Fig. 1 as the circles. To compare the
D 1 —n (6) results of the simulation with the theoretical prediction of
i A|<i‘1 +1 Eq. (5), we determine the value of the consténiby numeri-

cally solving Eq.(7), finding A= 11.42 foru=0.3. Substitut-
For a network with degree distributiop,, the number of ing this value in Eq(5), we plot the distributiom, of mean
nodes with degre& is Np,. Denoting byu=n/N the occu- occupation for nodes with degrde This function is plotted
pation density, we rewrite the condition determiniAgin in Fig. 1 as the thick line. We see that the theory matches the
terms of a sum over degreéastead of over nodes simulated results almost perfectly, confirming that the Fermi-
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Dirac distribution indeed describes the statistics of the par- !
ticles.

0.8

IV. JAMMING
0.6

In the particle dynamics defined in Sec. II, if a particle 3 |
attempts to move to an occupied node, the move fails and the = 041
particle stays where it is, no motion occurring in that time
step. Let us callP the probability that this happensgfter

transients are through and dynamical equilibrium is reaghed 02

given by the ratio of the number of time steps where this

takes place to the total number of time steps, in a long 0 : 0'2 : 0'4 : 0'6 : ols —
enough runP provides us with a quantitative measure of the ’ TR '

amount of jamming, and we investigate its behavior in this

Section. FIG. 2. Jamming probability? as a function of the particle

In this and the following section, we assume that the netdensity u, for a Barabasi-Albert network wittN=10" nodes.
work structure is that of generalized random netwarin Circles are values measured from the simulation, and the line is the
which the links are taken to be randomly distributed amongPrediction of Eq.(10).
the nodes, subject to the constraint that the degree distribu-
tion p, be equal to the prescribed distributi¢89]. Even  may be due to correlations arising from the growth process,
though most existent networks have correlations not presenthich are neglected in expressi@io).
in the equivalent random network, it is found that in most Notice thatP(u)> u throughout the plot. If the particles
cases they are well described by assuming they are randomccupied the nodes with uniform probability, we would ex-
with only small discrepancies. In the particular case of thepectP(u)=u. However, from Eq(5), the nodes with greater
Barabasi-Albert network, which we again use as an examplejegree are more likely to be occupied. This implies that a
small correlations are known to be presp#@], but we ne-  disproportionate number of links lead to occupied no@es
glect them here. As we shall see, this gives a good approxiaverage This is the reason why(u) > u. This phenom-
mation for the transport dynamics. enon happens for any network with an inhomogeneous de-

To calculateP, we first define the probability)y that,  gree distribution, and should be more pronounced the greater

following a randomly chosen link, we arrive at a node with the departure from homogeneity is. However, we must al-
degreek. For a network described by a degree distributionways haveP —1 asu—1.

P« in the random approximation discussed above, it is given

by [39] V. PERCOLATION
Q= Kpx 9) At any given time, the nodes of the network can be char-
K > mnﬂ' acterized as occupied or free. We thus have two well-defined
m

subnetworks: one composed of occupied nodes, and one de-

In each time step, we choose successively a particle and fined by unoccupied ones. An important question is whether
neighbor of this particle. If we assume that the distribution ofthese subnetworks percolate or not. In particular, if the sub-
links is not correlated to the degree distribution of the corre-network of free nodes percolates, it means that a finite frac-
sponding nodesthat is, we do not consider assortativity or tion of the remaining unoccupied nodes forms a single con-
dessortativity[41]), this amounts to choosing randomly a hected giant cluster. We can interpret this as a situation in
link in the network. Thus, the probability that we arrive at  Which “communication” is possible though a finite fraction

an occupied node is of the network. If, on the other hand, the free subnetwork
does not percolate, the unoccupied nodes form a fragmented

P=> Q.= iE Kpx (10) mutually disconnected collection of small clusters, each of

K R © AkKt+ 1’ which having a vanishing fraction of the total number of

nodes. In this case, global communication breaks down in
where(k)=2,kpy is the mean degree of the network. the network. We expect that, as the particle dengityn-

We check the prediction of EGLO) by a simulation, again creases, this transition from percolated to a nonpercolated
on a Barabasi-Albert network. By means of E48) and  state will occur. Of particular importance is the critical value
(10), we can calculate the prediction of our theory Bas a . of the density, in which the transition occurs.
function of the particle density.. For each value ojx we According to our model, the free and occupied subnet-
have to solve Eq(7) for A, and then do the sum in ELO)  works are constantly changing in time, even after dynamical
numerically. The result is shown in Fig. @e continuous equilibrium is reached. However, we expect that in the ther-
line). The circles in that figure are the valuesRifu) com-  modynamic limit(large networky the existencedor other-
puted from the simulation. Again, the agreement betweenvise) of percolation in these subnetworks does not depend
theory and simulation is very good, although Ef0) seems on time(although the precise structure of the percolated clus-
to be consistently a little below the observed results. Thiger does depend on tihe
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. ; notice that the critical density,. predicted by the theory

1 agrees very well with the results from the simulation.
i We can show that the free subnetwork always has a criti-
cal densityu. between 0 and 1, for any connected network
with average degree greater than 2. In this case, there is
always a percolation transition. To see this, let us denote by
M(u) the left-hand side of Eq12):

o
%0

o
=

N
~

Normalized maximum cluster size

] k(k-1)
M(u)=2{—-k}p- (13
02} o 1 ¢ (1WA )
%%i:;h T If M(u)>0, the subnetwork percolates; M(uw) <0, it is
0% 02 oz  os  os ‘ fragmented. From Eq8), A—« asu—0, and thus
n
lim M () = 2 {k(k=1) = Kip = (K - 2(k).  (14)
FIG. 3. Normalized size of the largest clusgas a function of u—0 k

the particle density, averaged over 100 realizations, for the unoc- . Lo 2
cupied(free) subnetwork(circles, and for the occupied subnetwork Frzom the |dent|ty<k')><k) , we conclude t'hat fortk) > 2,
(triangles. The simulation was done on a Barabasi-Albert network,<_k > 2(K). I-!ence, if the average degree is greater than 2,
with N=10* nodes. The arrow shows the theoretical prediction forlim,_oM(u) is always positive, and thus the free subnetwork
the critical densityu. percolates for sufficiently small particle density.

The other limitu— 1, is similarly handled, using Eg8).

Let p, be the probability that a node with degreeis Ve find that

“active” in some sense. For example, “active” might mean . _ _
occupied, or free. For generalized random networks, the sub- L'TlM(“) - % kp=—(k) < 0. (15
network defined by the “active” nodes percolatejk(k
-1Dpp=(K)==kpy [39]. The critical state, when the sys- This means that for sufficiently high density, the free subnet-

tem just percolates, is thus given by work is fragmented. Along with the result of the previous
paragraph, this implies thatOu.<1, as we announced. All
> {k(k-1)p - Kip=0, (11) important networks satisfyk)>2, and therefore they all
k have a percolation transition in the free subnetwork. We note

hi . . . that this conclusion remains valid even(i) diverges.
w ich dete_rmmes the per(_:olat|on transition. We are mos_tly It is also interesting to consider the percolation properties
interested in the percolatlon properties _of the unoccup|e%f the occupied subnetwork, for whigh=n, in Eq. (11). In
E{;Zeihseusonr?:j\?tli%rrl:'fc]:(r)rthvghtlrcahﬁg&iin-nk. Using Eq.(5), we this case, it is not true that there will always be a percolation
' transition. Take a general scale-free network, with a power-
k(k—1) law degree distribution:p,~k™. One example is the
> T+ KAL) —k(pc=0. (120  Barabasi-Albert network we use. For any fixgd A is a
k (#rc) constant in the sum of Eq11). The term in the first sum
behaves as-k?7?, and thus the sum diverges fgr< 3. This
means that in this range of valuesgfthe occupied subnet-
work always percolates, most of the occupied nodes being
lIl), there is at most one solution concentrated on a _single giant cluster vyith a finite fra_tction of
We again test these results t;y means of a numericallth? netwo_rk. For this subnetwork therg is no percolating tran-
)émon, as it percolates for any>0. This should be the case

genera_ted I_3araba5|-AIbe_rt network, with the same ParaM,; the Barabasi-Albert network we use in our examples, for
eters cited in Sec. lll. Using thpg, from the generated net-

. : which y=3. This conclusion is confirmed by the results of

work, we solve Eq(12) numerically. We find the valug, . R s
: ) . ._the simulation: Fig. 3 shows that there is no rangeudbr

~0.79. To check this, we simulate the stochastic dynam|c§vhich M is zero
of the particles(see Sec. )l for different values ofu, and '
record the normalized siZ&of the largest cluster of the free
subnetwork(that is, number of nodes in the largest cluster
divided by the total number of nodes in the subnetwork
averaged over a number of realizatiof#00, in this ex- The transport model introduced and studied here is admit-
amplg. We thus obtain a functio®(x). In the percolated tedly highly idealized: in real communication networks, in-
state,S>0, as a finite fraction of the nodes belong to theformation packets do not travel randomly, and the processing
largest cluster. In the non-percolated st&8e0. Hence, we capacity of each node is neither homogeneous, nor limited to
expectS(u) to be flat and equal to zero for>u.~0.79, one packet. However, we think our model is worth studying
and suddenly rise to nonzero values oK u.. As can be as a minimal model for transport in networks in which
seen in Fig. 3, this is indeed what happens. In particular;crowding” occurs, resulting from the interactiofin our

This equation, together with Eq7), must be solved for the
critical particle densityu,, for a given degree distribution.
We notice that, sincé\(w) is strictly decreasingsee Sec.

VI. CONCLUSIONS
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case, aversignof the packets. Because of the simplicity of confident that the collective phenomena of the model, espe-
our model, we were able to obtain analytical results for im-cially the percolating transition, will be present in a more
portant transport features. In particular, we predictadd realistic model, albeit the details are certain to differ. More-
numerically confirmefla percolation transition in the free over, the present model may be generalized to include inho-
subnetwork, and we are able to precisely quantify the waynogeneity in the processing capacity of the nodes, as well as

that inhomogeneities in the degree distributipresentin all  other features. This line of research is being actively pur-
real networks affect traffic. These phenomena are clearlyg,egq.

seen in our model as resulting from the inter-particle repul-

sion embodied in the Fermi-Dirac distribution, and this can

be quantified precisely. In a purely numerical model, it ACKNOWLEDGMENTS

would be hard to predict, for example, the percolating tran-
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