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We propose an idealized model for traffic in a network, in which many particles move randomly from node
to node, following the network’s links, and it is assumed that at most one particle can occupy any given node.
This is intended to mimic the finite forwarding capacity of nodes in communication networks, thereby allowing
the possibility of congestion and jamming phenomena. We show that the particles behave like free fermions,
with appropriately defined energy-level structure and temperature. The statistical properties of this system are
thus given by the corresponding Fermi-Dirac distribution. We use this to obtain analytical expressions for
dynamical quantities of interest, such as the mean occupation of each node and the transport efficiency, for
different network topologies and particle densities. We show that the subnetwork of free nodes always frag-
ments into small isolated clusters for a sufficiently large number of particles, implying a communication
breakdown at some density for all network topologies. These results are compared to direct simulations.
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I. INTRODUCTION

The subject of complex networks has become an impor-
tant area of research in statistical physics since its debut with
the paper by Watts and Strogatzf1g sfor reviews, see Refs.
f2–4gd. As a result of past work in the area, we now know
that most of the networks, either natural or manmade, are
scale-freef5g, with a very inhomogeneous distribution of the
number of neighbors among nodes, following a power law. A
natural question is: how do networks’ structural features af-
fect the dynamics of processes taking place within the net-
work? The study of the dynamics of complex networks is
seen nowadays as one of the main challenges in this area.

One of the most natural and important kind of dynamical
process to consider is the flow of traffic through a network. A
typical example is the flow of information in a communica-
tion network, such as the Internet. In the Internet, any mes-
sage is first split into small packets, each of which follows
independently its own trajectory, hopping from node to node
until they find their destiny. One can consider this process as
a number of particles moving in the network through its
links. As a first approach, one can imagine that the particles
do not interact with each other, or equivalently, one can con-
sider the motion of a single particle in the network. This
situation has been studied in a number of previous works.
The particle can be thought of as searching through the net-
work for its target node, using only local informationf6–13g
sit is worth mentioning that in Ref.f9g a search method is
adapted to take particle interaction into accountd. Another
approach is to consider that the particle is performing a ran-
dom walk in the network, and study the properties of the
resulting diffusion processf14–20g.

These “noninteracting” approaches yield valuable insight
on the full problem of traffic, besides being important in their
own right. However, in order to fully understand the dynam-
ics of network traffic, sooner or later the interaction between

particles has to be taken into account. In particular, the nodes
of real networks do not have infinite processing capacity, and
if there are many particlessInternet “packets,” for exampled,
they will get into each other’s way, causing collective behav-
ior such as congestion and jamming. One of the ways to take
this into account is by measuring the importance of each
node to transport, motivating the introduction ofcentrality
measures, of which the most prominent is thebetweenness
centrality f21–26g. A different approach is the direct simula-
tion of traffic, usually by cellular-automata-like models
f24–35g. Recent models have also considered cascades of
malfunctions caused by congestionf36g.

We feel that it would be highly desirable to have a simple
model of transport which incorporates collective effects like
congestion in a tractable way, such that some analytic results
could be obtained for the statistics of the system. Even
though such model would necessarily have to be highly ide-
alized, it would serve as a tool to explore the dynamics of
transport in real networks. This follows the tradition of sta-
tistical physics, which has greatly benefitted from the use of
idealized models, such as the Ising model for magnetic sys-
tems, and many others. Motivated by this, we introduce in
this paper a simple model of traffic in a network, which
incorporates the collective effects in the simplest possible
way. In our model, there aren particles moving randomly in
the network, subject to the constraint that each node can be
occupied by at most one particle. Other than this constraint,
each particle performs a random walksdetails of the model
are given in Sec. IId. This avoidance rule is inspired by the
limited capacity of nodes in communication networks to pro-
cess information. In Sec. III, we show that this constraint
works like Pauli’s exclusion principle of quantum mechan-
ics. As a consequence, the particles behave like a set ofn
free fermions on a quantum system withN single-particle
statesswhereN is the number of nodes of the networkd, with
appropriately chosen energy levels. The statistical properties
of the model are thus given by the Fermi-Dirac distribution
of the equivalent quantum system. As a result, analytical
expressions are found for all the statistical quantities of in-
terest. To the best of our knowledge, this is the first model of*Email address: amoura@if.usp.br
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transport in networks with inter-packet interaction which
yields analytical results. Although it is certainly very ideal-
ized, it incorporates collective effects such as jamming in a
natural way. The appearance of a Fermi-Dirac statistics in
this model establishes a nice connection between transport
problems in networks and equilibrium quantum statistical
mechanics, which perhaps can be generalized to more real-
istic transport models. As a testing ground for our theory, a
direct simulation of the traffic process described above is
performed in a network grown according to the Barabási-
Albert scheme, and the numerical results obtained thereby
are found to be in excellent agreement with those predicted
by the Fermi-Dirac distribution.

We want to use this theory to get information on traffic
flow, especially collective effects such as jamming. With this
motivation in mind, we define in Sec. IV a quantityQ pro-
portional to the number of failed hoppings due to the occu-
pation of the nodes, and find an analytical expression for it
using the Fermi-Dirac statistics. We find that the inhomoge-
neity of the degree distribution tends to decrease the trans-
port efficiency of the network. This can be understood from
the fact that the most connected nodes are the ones most
likely to be occupied, and they are exactly the most crucial
nodes to transport.

The structure of the subnetwork of occupied nodes is in-
vestigated in Sec. V. The condition for the percolation of this
subnetwork is found in terms of the density of particles
snumber of particles divided by the number of nodes of the
networkd. We apply this condition to the particular case of a
scale-free network, with a degree distribution given by a
power law, pk,k−g. We find that forgø3, the occupied
nodes always percolate, even for arbitrarily small densities
sin the limit of large network sized. Thus, in these networks,
the particles always aggregate in a giant cluster consisting of
son averaged highly connected occupied nodes.

Another important issue is the structure of the freesunoc-
cupiedd nodes, also discussed in Sec. V. We apply the Fermi-
Dirac formalism to find the percolation condition of the free
subnetwork. The result is that there is always a percolating
transition, for any network topology: above a certain critical
density of particlesswhich depends on the degree distribu-
tiond, the free subnetwork no longer percolates. This means
that for high densities, the free nodes are scattered among
small fragmented noncommunicating clusters. The free sub-
network is the set of nodes in a communication network
through which a new “packet” can pass unhindered by the
congestion. Thus, for densities above this percolating transi-
tion, there is a global breakdown in communication.

The final section of the paper, Sec. VI, summarizes our
results, with a discussion on their significance and their pos-
sible generalization.

II. MODEL

In this paper we consider a network withN nodes. We
assume the network to be connected, that is, there is a path,
built with network links, connecting any two nodes. The net-
work is defined by the probabilitiespk that a randomly cho-
sen node hask neighborssi.e., that the node has degreekd.

Our theory is valid for any distributionpk, so we do not
make any assumption about it at this point.

We assume that information flows in the network in dis-
crete packets. We represent this byn,N “packets” or “par-
ticles” moving in the network. These particles can be thought
of as representing data packets in the Internet, for example.
We further assume that each node can be occupied by at
most one particle. This is the simplest way to incorporate
into the model a finite capacity of each node. This prescrip-
tion amounts to an effective inter-particle interaction: par-
ticles “avoid” each other.

In order to completely define the model, we must pre-
scribe how the particles move within the network. We define
a very simple stochastic dynamics. At each time step, one of
the n particles is chosen randomly, with uniform probability
among all particles. The chosen particle is at this moment in
some node, which is linked tok other nodessits neighborsd.
The particle chooses one of thesek neighbors randomly, and
tries to move there. If the chosen node is unoccupied, the
move is successful, and the node becomes occupied by the
particle, which leaves its previous node free. If, however, the
target node is already occupied, the move fails, and the par-
ticle remains where it is. After this, a new time step begins, a
new particle is selected randomly, and so on.

In the case when there is only a single particle in the
network sn=1d, the above dynamics means that this particle
executes a random walk in the network. Ifn.1, however,
the particles interfere with each other’s motion. This interfer-
ence is a direct result of our restriction that there can be only
one particle in a node at any given time. There results from
this a kind of “interaction” between the particles, which is
responsible for the appearance of collective phenomena such
as jamming. The model presented here introduces this inter-
action in the simplest possible way, which allows us to un-
derstand in detail the system’s behavior, and to get some
important analytical results, as we shall see in the following.

III. FERMI-DIRAC STATISTICS OF THE
TRAFFIC DYNAMICS

As mentioned in the previous section, a single particle
following the dynamics of our model performs a random
walk in the network. It is a well-known result from graph
theory that in this case, in the limit of long times, the time
the particle spends in a given node is proportional to the
degreek of the nodef37g. In other words, the probabilityqi
that the particle is found in a nodei of degreeki is propor-
tional to ki:

qi =
ki

o j
kj

, s1d

where the sum is over all nodes of the network.
This gives us the occupation probability of any node in

the case of one particle,n=1. What happens if there are
many particles in the network? The particles interact with
each other only through the restriction that the occupation of
any node is at most 1. Exactly the same situation occurs in a
system with n fermions, consisting ofN single-particle
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states. No two fermions are allowed to occupy the same
quantum state. If it is assumed that then fermions do not
interact directlysi.e., they are freed, this restriction gives rise
to Fermi-Dirac distributionf38g. Our particles are an exactly
analogous system: the particlessor “packets”d are the equiva-
lent of fermions, and the nodes are analogous to quantum
single-particle states. This analogy leads us to conclude that
the occupation of the nodes (after equilibrium is reached) is
given by the Fermi-Dirac distribution.

In order to derive results from this analogy, we need to
know the equivalent of the “energy” associated with each
node, that is, the energy of the single-particle states. This is
done by using the result from statistical physics that the one-
particle occupation probability of a statei is proportional to
the Boltzmann factor:

qi = C0e
−bEi , s2d

whereEi is the energy associated with the statei, b is the
inverse temperature, andC0 is a normalization constant. The
single-particle occupation probability in our case corre-
sponds to one particle moving through the network, and is
given by Eq.s1d. Substituting this in the above expression,
we obtain the expression for the “energy” associated with a
nodei with degreeki:

bEi = lnsCki
−1d. s3d

HereC is a constant. Notice that Eq.s3d determines only the
productbEi, not b or Ei separately. This means that in our
model the “temperature” 1/b is not fixed, and cannot be
thought of as an independent external parameter, as is usu-
ally the case in statistical physics.

We denote byni the mean occupation of nodei, when
there aren particles in the network. As usual in the physics
of many-particle systems, we use the grand canonical en-
semble, where the number of particles is not fixed, but its
mean value is prescribed.ni is then given by the Fermi-Dirac
distribution:

ni =
1

ea+bEi + 1
, s4d

wherebEi is given by Eq.s3d anda is the chemical poten-
tial. Substituting Eq.s3d, we have

ni =
1

Aki
−1 + 1

, s5d

where A is related to the chemical potential, and is deter-
mined by requiring that the average number of particles in
the network be equal to the prescribed valuen:

o
i

1

Aki
−1 + 1

= n. s6d

For a network with degree distributionpk, the number of
nodes with degreek is Npk. Denoting bym=n/N the occu-
pation density, we rewrite the condition determiningA in
terms of a sum over degreessinstead of over nodesd:

o
k

pk

Asmdk−1 + 1
= m, s7d

where we indicate explicitly thatA depends onm. From the
above equation, we can show thatAsmd is a positive decreas-
ing function of m, dA/dm,0. Using the fact that thepk
distribution is normalizedsokpk=1d, and Eq.s7d, we can
further show that

lim
m→0

Asmd = `; lim
m→1

Asmd = 0. s8d

We note that even though the number of particlesn sand
thereforemd is not exactly constant in the grand canonical
ensemble, for largen its fluctuations are negligible. Thus, in
the thermodynamic limitsn,N→`, n/N→md, the results are
the same as those obtained using the canonical ensemble
swhich fixesnd.

From Eq.s5d, we see that the mean occupation of a node
increases with its degree, as was to be expected. Moreover,
ask→`, nk→1: if a node has many neighbors, it is almost
certain that it will be occupied by a particle. This “cluster-
ing” of particles in the more connected nodes leads to jam-
ming, as we shall see.

In order to test Eq.s5d, we simulate the stochastic dynam-
ics described in Sec. II. We generate a scale-free network by
the Barabási-Albert algorithmf5g, with N=105 nodes, with
an average of 6 links per node. We releasen=33104 par-
ticles in it, initially randomly distributed among all nodes.
This corresponds tom=0.3. After a sufficiently long time
senough to reach dynamical equilibriumd, we measure the
mean occupation of the nodes as a function of their degreek.
The result is shown in Fig. 1 as the circles. To compare the
results of the simulation with the theoretical prediction of
Eq. s5d, we determine the value of the constantA by numeri-
cally solving Eq.s7d, findingA<11.42 form=0.3. Substitut-
ing this value in Eq.s5d, we plot the distributionnk of mean
occupation for nodes with degreek. This function is plotted
in Fig. 1 as the thick line. We see that the theory matches the
simulated results almost perfectly, confirming that the Fermi-

FIG. 1. Mean occupationnk of nodes with degreek, in a
Barabási-Álbert network with 105 nodes, and 33104 particles, cor-
responding toA<11.42. Circles are values measured from the
simulation, and the continuous line is the prediction of Eq.s6d.
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Dirac distribution indeed describes the statistics of the par-
ticles.

IV. JAMMING

In the particle dynamics defined in Sec. II, if a particle
attempts to move to an occupied node, the move fails and the
particle stays where it is, no motion occurring in that time
step. Let us callP the probability that this happenssafter
transients are through and dynamical equilibrium is reachedd,
given by the ratio of the number of time steps where this
takes place to the total number of time steps, in a long
enough run.P provides us with a quantitative measure of the
amount of jamming, and we investigate its behavior in this
Section.

In this and the following section, we assume that the net-
work structure is that of ageneralized random network, in
which the links are taken to be randomly distributed among
the nodes, subject to the constraint that the degree distribu-
tion pk be equal to the prescribed distributionf39g. Even
though most existent networks have correlations not present
in the equivalent random network, it is found that in most
cases they are well described by assuming they are random,
with only small discrepancies. In the particular case of the
Barabási-Albert network, which we again use as an example,
small correlations are known to be presentf40g, but we ne-
glect them here. As we shall see, this gives a good approxi-
mation for the transport dynamics.

To calculateP, we first define the probabilityQk that,
following a randomly chosen link, we arrive at a node with
degreek. For a network described by a degree distribution
pk, in the random approximation discussed above, it is given
by f39g

Qk =
kpk

om
mpm

. s9d

In each time step, we choose successively a particle and a
neighbor of this particle. If we assume that the distribution of
links is not correlated to the degree distribution of the corre-
sponding nodessthat is, we do not consider assortativity or
dessortativityf41gd, this amounts to choosing randomly a
link in the network. Thus, the probabilityP that we arrive at
an occupied node is

P = o
k

Qknk =
1

kklok

kpk

Ak−1 + 1
, s10d

wherekkl=okkpk is the mean degree of the network.
We check the prediction of Eq.s10d by a simulation, again

on a Barabási-Albert network. By means of Eqs.s7d and
s10d, we can calculate the prediction of our theory forP as a
function of the particle densitym. For each value ofm we
have to solve Eq.s7d for A, and then do the sum in Eq.s10d
numerically. The result is shown in Fig. 2sthe continuous
lined. The circles in that figure are the values ofPsmd com-
puted from the simulation. Again, the agreement between
theory and simulation is very good, although Eq.s10d seems
to be consistently a little below the observed results. This

may be due to correlations arising from the growth process,
which are neglected in expressions10d.

Notice thatPsmd.m throughout the plot. If the particles
occupied the nodes with uniform probability, we would ex-
pectPsmd=m. However, from Eq.s5d, the nodes with greater
degree are more likely to be occupied. This implies that a
disproportionate number of links lead to occupied nodesson
averaged. This is the reason whyPsmd.m. This phenom-
enon happens for any network with an inhomogeneous de-
gree distribution, and should be more pronounced the greater
the departure from homogeneity is. However, we must al-
ways haveP→1 asm→1.

V. PERCOLATION

At any given time, the nodes of the network can be char-
acterized as occupied or free. We thus have two well-defined
subnetworks: one composed of occupied nodes, and one de-
fined by unoccupied ones. An important question is whether
these subnetworks percolate or not. In particular, if the sub-
network of free nodes percolates, it means that a finite frac-
tion of the remaining unoccupied nodes forms a single con-
nected giant cluster. We can interpret this as a situation in
which “communication” is possible though a finite fraction
of the network. If, on the other hand, the free subnetwork
does not percolate, the unoccupied nodes form a fragmented
mutually disconnected collection of small clusters, each of
which having a vanishing fraction of the total number of
nodes. In this case, global communication breaks down in
the network. We expect that, as the particle densitym in-
creases, this transition from percolated to a nonpercolated
state will occur. Of particular importance is the critical value
mc of the density, in which the transition occurs.

According to our model, the free and occupied subnet-
works are constantly changing in time, even after dynamical
equilibrium is reached. However, we expect that in the ther-
modynamic limit slarge networksd, the existencesor other-
wised of percolation in these subnetworks does not depend
on timesalthough the precise structure of the percolated clus-
ter does depend on timed.

FIG. 2. Jamming probabilityP as a function of the particle
density m, for a Barabási-Albert network withN=104 nodes.
Circles are values measured from the simulation, and the line is the
prediction of Eq.s10d.

ALESSANDRO P. S. DE MOURA PHYSICAL REVIEW E71, 066114s2005d

066114-4



Let rk be the probability that a node with degreek is
“active” in some sense. For example, “active” might mean
occupied, or free. For generalized random networks, the sub-
network defined by the “active” nodes percolates ifokksk
−1drkpkù kkl=okkpk f39g. The critical state, when the sys-
tem just percolates, is thus given by

o
k

hksk − 1drk − kjpk = 0, s11d

which determines the percolation transition. We are mostly
interested in the percolation properties of the unoccupied
sfreed subnetwork, for whichrk=1−nk. Using Eq. s5d, we
find the condition for the transition:

o
k
H ksk − 1d

1 + k/Asmcd
− kJpk = 0. s12d

This equation, together with Eq.s7d, must be solved for the
critical particle densitymc, for a given degree distribution.
We notice that, sinceAsmd is strictly decreasingssee Sec.
III d, there is at most one solution.

We again test these results by means of a numerically
generated Barabási-Albert network, with the same param-
eters cited in Sec. III. Using thepk from the generated net-
work, we solve Eq.s12d numerically. We find the valuemc
<0.79. To check this, we simulate the stochastic dynamics
of the particlesssee Sec. IId for different values ofm, and
record the normalized sizeS of the largest cluster of the free
subnetworksthat is, number of nodes in the largest cluster
divided by the total number of nodes in the subnetworkd,
averaged over a number of realizationss100, in this ex-
ampled. We thus obtain a functionSsmd. In the percolated
state,S.0, as a finite fraction of the nodes belong to the
largest cluster. In the non-percolated state,S=0. Hence, we
expectSsmd to be flat and equal to zero form.mc<0.79,
and suddenly rise to nonzero values form,mc. As can be
seen in Fig. 3, this is indeed what happens. In particular,

notice that the critical densitymc predicted by the theory
agrees very well with the results from the simulation.

We can show that the free subnetwork always has a criti-
cal densitymc between 0 and 1, for any connected network
with average degree greater than 2. In this case, there is
always a percolation transition. To see this, let us denote by
Msmd the left-hand side of Eq.s12d:

Msmd = o
k
H ksk − 1d

1 + k/Asmcd
− kJpk. s13d

If Msmd.0, the subnetwork percolates; ifMsmd,0, it is
fragmented. From Eq.s8d, A→` asm→0, and thus

lim
m→0

Msmd = o
k

hksk − 1d − kjpk = kk2l − 2kkl. s14d

From the identitykk2lù kkl2, we conclude that forkkl.2,
kk2l.2kkl. Hence, if the average degree is greater than 2,
limm→0Msmd is always positive, and thus the free subnetwork
percolates for sufficiently small particle density.

The other limitm→1, is similarly handled, using Eq.s8d.
We find that

lim
m→1

Msmd = − o
k

kpk = − kkl , 0. s15d

This means that for sufficiently high density, the free subnet-
work is fragmented. Along with the result of the previous
paragraph, this implies that 0,mc,1, as we announced. All
important networks satisfykkl.2, and therefore they all
have a percolation transition in the free subnetwork. We note
that this conclusion remains valid even ifkk2l diverges.

It is also interesting to consider the percolation properties
of the occupied subnetwork, for whichrk=nk in Eq. s11d. In
this case, it is not true that there will always be a percolation
transition. Take a general scale-free network, with a power-
law degree distribution:pk,k−g. One example is the
Barabási-Albert network we use. For any fixedm, A is a
constant in the sum of Eq.s11d. The term in the first sum
behaves as,k2−g, and thus the sum diverges forgø3. This
means that in this range of values ofg, the occupied subnet-
work always percolates, most of the occupied nodes being
concentrated on a single giant cluster with a finite fraction of
the network. For this subnetwork there is no percolating tran-
sition, as it percolates for anym.0. This should be the case
for the Barabási-Albert network we use in our examples, for
which g=3. This conclusion is confirmed by the results of
the simulation: Fig. 3 shows that there is no range ofm for
which M is zero.

VI. CONCLUSIONS

The transport model introduced and studied here is admit-
tedly highly idealized: in real communication networks, in-
formation packets do not travel randomly, and the processing
capacity of each node is neither homogeneous, nor limited to
one packet. However, we think our model is worth studying
as a minimal model for transport in networks in which
“crowding” occurs, resulting from the interactionsin our

FIG. 3. Normalized size of the largest clusterS as a function of
the particle densitym, averaged over 100 realizations, for the unoc-
cupiedsfreed subnetworkscirclesd, and for the occupied subnetwork
strianglesd. The simulation was done on a Barabási-Albert network,
with N=104 nodes. The arrow shows the theoretical prediction for
the critical densitymc.
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case, aversiond of the packets. Because of the simplicity of
our model, we were able to obtain analytical results for im-
portant transport features. In particular, we predictedsand
numerically confirmedd a percolation transition in the free
subnetwork, and we are able to precisely quantify the way
that inhomogeneities in the degree distributionspresent in all
real networksd affect traffic. These phenomena are clearly
seen in our model as resulting from the inter-particle repul-
sion embodied in the Fermi-Dirac distribution, and this can
be quantified precisely. In a purely numerical model, it
would be hard to predict, for example, the percolating tran-
sition, and, more importantly, to understand precisely why it
happens, as we can do with our model. Furthermore, we are

confident that the collective phenomena of the model, espe-
cially the percolating transition, will be present in a more
realistic model, albeit the details are certain to differ. More-
over, the present model may be generalized to include inho-
mogeneity in the processing capacity of the nodes, as well as
other features. This line of research is being actively pur-
sued.
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